• About Us
    • Our Team
    • Our Work
    • In The News
  • Resources
    • Curated Research Library
    • Popular Articles
    • Legal Beagle Archive
    • The Education Program
    • VCS Vet Research Program
  • Directory of Practitioners
  • Get Involved
    • Become A Sponsor
    • Join Email List
  • Contact
  • SHOP NOW
    • VCS APPAREL
    • PET & PARENT JEWELRY
  • DONATE
  • Members Dashboard
Veterinary Cannabis SocietyVeterinary Cannabis Society
  • About Us
    • Our Team
    • Our Work
    • In The News
  • Resources
    • Curated Research Library
    • Popular Articles
    • Legal Beagle Archive
    • The Education Program
    • VCS Vet Research Program
  • Directory of Practitioners
  • Get Involved
    • Become A Sponsor
    • Join Email List
  • Contact
  • SHOP NOW
    • VCS APPAREL
    • PET & PARENT JEWELRY
  • DONATE
  • Members Dashboard

A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT1A Receptors

Home A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT1A Receptors

Curated Research Library

  • Back to Curated Research Library

A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT1A Receptors

  • By: Echeverry, C., Medina, V., Nadal, X., Narbondo, C., Prunell, G., Reyes-Parada, M., & Scorza, C
  • Published On: 4 September, 2020
  • Publication: springer.com
  • Tags: general, receptors
  • Category: Neurology

Previous preclinical studies have demonstrated that cannabidiol (CBD) and cannabigerol (CBG), two non-psychotomimetic phytocannabinoids from Cannabis sativa, induce neuroprotective effects on toxic and neurodegenerative processes. However, a comparative study of both compounds has not been reported so far, and the targets involved in this effect remain unknown. The ability of CBD and CBG to attenuate the neurotoxicity induced by two insults involving oxidative stress (hydrogen peroxide, H2O2) and mitochondrial dysfunction (rotenone) was evaluated in neural cell cultures. The involvement of CB-1 and CB-2 or 5-HT1A receptors was investigated. The neuroprotective effect of their respective acids forms, cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA), was also analyzed. MTT and immunocytochemistry assays were used to evaluate cell viability. No significant variation on cell viability was per se induced by the lower concentrations tested of CBD and CBG or CBDA and CBGA; however, high concentrations of CBD, CBDA, or CBGA were toxic since a 40–50% reduction of cell viability was observed. CBD and CBG showed neuroprotective effects against H2O2 or rotenone; however, both compounds were more effective in attenuating the rotenone-induced neurotoxicity. A high concentration of CBDA reduced the rotenone-induced neurotoxicity. WAY100635 (5-HT1A receptor antagonist) but not AM251 and AM630 (CB1 or CB2 receptor antagonists, respectively) significantly diminished the neuroprotective effect induced by CBG only against rotenone. Our results contribute to the understanding of the neuroprotective effect of CBD and CBG, showing differences with their acid forms, and also highlight the role of 5-HT1A receptors in the mechanisms of action of CBG.

Click Here to Access Article
  • Back to Curated Research Library
Search

Our Mission is to create lasting solutions that ensure the safe use of cannabis in pets through education, advocacy, and promoting product standards.

Our Vision is an educated and empowered global veterinary medical cannabis community.

  • About Us
  • Our Work
  • Get Involved
  • Contact Us
  • Donate

Email:
Click here to email us

Florida Mailing Address
7901 4th St. North, Suite 4404
St. Petersburg, FL 33702

Veterinary Cannabis Society is a nonprofit, 501(c)(3) organization in the United States. Tax ID #85-0986090

Veterinary Cannabis Society does not endorse any specific products.

© 2025 · Veterinary Cannabis Society

  • Terms of Use
  • Privacy Policy
  • State Notices
  • Contact