• About Us
    • Our Team
    • Our Work
    • In The News
  • Resources
    • Curated Research Library
    • Popular Articles
    • Legal Beagle Archive
    • The Education Program
    • VCS Vet Research Program
  • Directory of Practitioners
  • Get Involved
    • Become A Sponsor
    • Join Email List
  • Contact
  • SHOP NOW
    • VCS APPAREL
    • PET & PARENT JEWELRY
  • DONATE
  • Members Dashboard
Veterinary Cannabis SocietyVeterinary Cannabis Society
  • About Us
    • Our Team
    • Our Work
    • In The News
  • Resources
    • Curated Research Library
    • Popular Articles
    • Legal Beagle Archive
    • The Education Program
    • VCS Vet Research Program
  • Directory of Practitioners
  • Get Involved
    • Become A Sponsor
    • Join Email List
  • Contact
  • SHOP NOW
    • VCS APPAREL
    • PET & PARENT JEWELRY
  • DONATE
  • Members Dashboard

Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors

Home Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors

Curated Research Library

  • Back to Curated Research Library

Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors

  • By: Markus Kathmann, Karsten Flau, Agnes Redmer, Christian Tränkle, Eberhard Schlicker
  • Published On: 1 February, 2006
  • Publication: Naunyn Schmiedebergs Arch Pharmacol
  • Tags: general
  • Category: Pharmacokinetics / Pharmacodynamics

Abstract

The mechanism of action of cannabidiol, one of the major constituents of cannabis, is not well understood but a noncompetitive interaction with mu opioid receptors has been suggested on the basis of saturation binding experiments. The aim of the present study was to examine whether cannabidiol is an allosteric modulator at this receptor, using kinetic binding studies, which are particularly sensitive for the measurement of allosteric interactions at G protein-coupled receptors. In addition, we studied whether such a mechanism also extends to the delta opioid receptor. For comparison, (-)-Delta9-tetrahydrocannabinol (THC; another major constituent of cannabis) and rimonabant (a cannabinoid CB1 receptor antagonist) were studied. In mu opioid receptor binding studies on rat cerebral cortex membrane homogenates, the agonist 3H-DAMGO bound to a homogeneous class of binding sites with a KD of 0.68+/-0.02 nM and a Bmax of 203+/-7 fmol/mg protein. The dissociation of 3H-DAMGO induced by naloxone 10 microM (half life time of 7+/-1 min) was accelerated by cannabidiol and THC (at 100 microM, each) by a factor of 12 and 2, respectively. The respective pEC50 values for a half-maximum elevation of the dissociation rate constant k(off) were 4.38 and 4.67; 3H-DAMGO dissociation was not affected by rimonabant 10 microM. In delta opioid receptor binding studies on rat cerebral cortex membrane homogenates, the antagonist 3H-naltrindole bound to a homogeneous class of binding sites with a KD of 0.24+/-0.02 nM and a Bmax of 352+/-22 fmol/mg protein. The dissociation of 3H-naltrindole induced by naltrindole 10 microM (half life time of 119+/-3 min) was accelerated by cannabidiol and THC (at 100 microM, each) by a factor of 2, each. The respective pEC50 values were 4.10 and 5.00; 3H-naltrindole dissociation was not affected by rimonabant 10 microM. The present study shows that cannabidiol is an allosteric modulator at mu and delta opioid receptors. This property is shared by THC but not by rimonabant.

Click Here to Access Article
  • Back to Curated Research Library
Search

Our Mission is to create lasting solutions that ensure the safe use of cannabis in pets through education, advocacy, and promoting product standards.

Our Vision is an educated and empowered global veterinary medical cannabis community.

  • About Us
  • Our Work
  • Get Involved
  • Contact Us
  • Donate

Email:
Click here to email us

Florida Mailing Address
7901 4th St. North, Suite 4404
St. Petersburg, FL 33702

Veterinary Cannabis Society is a nonprofit, 501(c)(3) organization in the United States. Tax ID #85-0986090

Veterinary Cannabis Society does not endorse any specific products.

© 2025 · Veterinary Cannabis Society

  • Terms of Use
  • Privacy Policy
  • State Notices
  • Contact