• About Us
    • Our Team
    • Our Work
    • In The News
  • Resources
    • Curated Research Library
    • Popular Articles
    • Legal Beagle Archive
    • The Education Program
    • VCS Vet Research Program
  • Directory of Practitioners
  • Get Involved
    • Become A Sponsor
    • Join Email List
  • Contact
  • SHOP NOW
    • VCS APPAREL
    • PET & PARENT JEWELRY
  • DONATE
  • Members Dashboard
Veterinary Cannabis SocietyVeterinary Cannabis Society
  • About Us
    • Our Team
    • Our Work
    • In The News
  • Resources
    • Curated Research Library
    • Popular Articles
    • Legal Beagle Archive
    • The Education Program
    • VCS Vet Research Program
  • Directory of Practitioners
  • Get Involved
    • Become A Sponsor
    • Join Email List
  • Contact
  • SHOP NOW
    • VCS APPAREL
    • PET & PARENT JEWELRY
  • DONATE
  • Members Dashboard

The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells

Home The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells

Curated Research Library

  • Back to Curated Research Library

The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells

  • By: M L Holland, J A Panetta, J M Hoskins, M Bebawy, B D Roufogalis, J D Allen, J C Arnold
  • Published On: 14 April, 2006
  • Publication: Biochem Pharmacol
  • Tags: Human medicine
  • Category: Oncology

Abstract

Cannabis is the most widely used illicit drug in the world. Cannabinoids are used therapeutically by some patients as they have analgesic, anti-emetic and appetite stimulant properties which palliate adverse symptoms. Use of these agents in an oncology setting raises the question of whether they act to modulate the effectiveness of concurrently administered anti-cancer drugs. The transporter, P-glycoprotein (P-gp) confers multiple drug resistance (MDR) by effluxing a diverse array of anti-cancer agents. This study was undertaken to examine the effect of cannabinoids on P-gp. Unlike the known P-gp inhibitor, PSC833, short 1h exposure to three plant-derived cannabinoids, cannabinol (CBN), cannabidiol (CBD) and Delta(9)-tetrahydrocannabinol (THC) and the synthetic cannabinoid receptor agonist, WIN55, 212-2 (WIN) did not inhibit the efflux of the P-gp substrate Rhodamine 123 (Rh123) in either a drug-selected human T lymphoblastoid leukaemia cell line (CEM/VLB(100)) or in a mouse fibroblast MDR1 transfected cell line (77.1). However, in CEM/VLB(100) cells, prolonged 72 h exposure to the cannabinoids, THC and CBD, decreased P-gp expression to a similar extent as the flavonoid, curcumin (turmeric). This correlated with an increase in intracellular accumulation of Rh123 and enhanced sensitivity of the cells to the cytotoxic actions of the P-gp substrate, vinblastine. Taken together, these results provide preliminary evidence that cannabinoids do not exacerbate P-gp mediated MDR. Further, plant-derived cannabinoids are moderately effective in reversing MDR in CEM/VLB(100) cells by decreasing P-gp expression.

Click Here to Access Article
  • Back to Curated Research Library
Search

Our Mission is to create lasting solutions that ensure the safe use of cannabis in pets through education, advocacy, and promoting product standards.

Our Vision is an educated and empowered global veterinary medical cannabis community.

  • About Us
  • Our Work
  • Get Involved
  • Contact Us
  • Donate

Email:
Click here to email us

Florida Mailing Address
7901 4th St. North, Suite 4404
St. Petersburg, FL 33702

Veterinary Cannabis Society is a nonprofit, 501(c)(3) organization in the United States. Tax ID #85-0986090

Veterinary Cannabis Society does not endorse any specific products.

© 2025 · Veterinary Cannabis Society

  • Terms of Use
  • Privacy Policy
  • State Notices
  • Contact